首页> 外文OA文献 >Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach
【2h】

Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

机译:按需乘车的乘客需求短期预测   服务:时空深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short-term passenger demand forecasting is of great importance to theon-demand ride service platform, which can incentivize vacant cars moving fromover-supply regions to over-demand regions. The spatial dependences, temporaldependences, and exogenous dependences need to be considered simultaneously,however, which makes short-term passenger demand forecasting challenging. Wepropose a novel deep learning (DL) approach, named the fusion convolutionallong short-term memory network (FCL-Net), to address these three dependenceswithin one end-to-end learning architecture. The model is stacked and fused bymultiple convolutional long short-term memory (LSTM) layers, standard LSTMlayers, and convolutional layers. The fusion of convolutional techniques andthe LSTM network enables the proposed DL approach to better capture thespatio-temporal characteristics and correlations of explanatory variables. Atailored spatially aggregated random forest is employed to rank the importanceof the explanatory variables. The ranking is then used for feature selection.The proposed DL approach is applied to the short-term forecasting of passengerdemand under an on-demand ride service platform in Hangzhou, China.Experimental results, validated on real-world data provided by DiDi Chuxing,show that the FCL-Net achieves better predictive performance than traditionalapproaches including both classical time-series prediction models and neuralnetwork based algorithms (e.g., artificial neural network and LSTM). This paperis one of the first DL studies to forecast the short-term passenger demand ofan on-demand ride service platform by examining the spatio-temporalcorrelations.
机译:短期乘客需求预测对于按需乘车服务平台非常重要,该平台可以激励从供过于求区域转移到供过于求区域的空车。然而,需要同时考虑空间依赖性,时间依赖性和外生依赖性,这使得短期旅客需求预测具有挑战性。我们提出一种新颖的深度学习(DL)方法,称为融合卷积长短期记忆网络(FCL-Net),以解决一个端到端学习体系结构中的这三个依赖性。该模型由多个卷积长短期内存(LSTM)层,标准LSTM层和卷积层堆叠和融合。卷积技术与LSTM网络的融合使所提出的DL方法能够更好地捕获时空特征和解释变量的相关性。采用适当的空间聚集随机森林对解释变量的重要性进行排序。然后将该排名用于特征选择。将拟议的DL方法应用于中国杭州按需乘车服务平台下的乘客需求的短期预测。实验结果经DiDi Chuxing提供的真实数据验证,结果表明,FCL-Net的预测性能优于传统方法,包括传统的时间序列预测模型和基于神经网络的算法(例如,人工神经网络和LSTM)。本文是通过检查时空相关性来预测按需乘车服务平台的短期乘客需求的第一项DL研究之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号